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A B S T R A C T   

Multiple sclerosis (MS) is a complex disease, and its pathophysiology impacts the function of immune and central 
nervous system cell types. Despite extensive investigation into the aetiology of MS, the underlying cause/s 
remain elusive and consequently, faithful in vitro or in vivo preclinical models of MS do not exist. Advances in 
human stem cell technologies have enabled the generation of induced pluripotent stem cells (iPSCs) from people 
with MS. This review summarises the discoveries made using iPSCs derived from people with MS and explores 
their current and potential application/s in MS research.   

1. Overview of multiple sclerosis 

Multiple sclerosis (MS) is a complex neuroinflammatory and neuro-
degenerative disease that affects central nervous system (CNS) function. 
The initial events that lead to CNS inflammation, demyelination and 
neurodegeneration are unknown (Fischer et al., 2013), but there are two 
competing hypotheses (Stys et al., 2012): the ‘inside-out’ hypothesis 
proposes that primary damage to the CNS precedes and primes an 
autoimmune attack from peripheral immune cells; while the ‘outside-in’ 
hypothesis suggests that the immune system mounts a response that is 
misdirected against the CNS, perhaps due to molecular mimicry (Titus 
et al., 2020). It is accepted that a combination of genetic, environmental 
and lifestyle factors underpin MS susceptibility (Gresle et al., 2020). The 
largest genome wide association study (GWAS) of MS, that has been 
carried out to date, identified 233 independent genetic variants that 
reached genome-wide significance (International Multiple Sclerosis 
Genetics Consortium, 2019), underscoring the polygenic complexity of 
this disease. Alone, each variant represents a minute increase in MS 
susceptibility, but together they are estimated to account for 39% of the 
genetic component of MS risk. These genetic risk variants could also 
interact with environmental and lifestyle risk factors, such as viral 
infection, particularly Epstein Barr virus (Bjornevik et al., 2022; Rang 
et al., 2022), smoking (Arneth, 2020) and adolescent obesity (Mokry 
et al., 2016), however, more research is required to learn how they work 
together to impact the function/s of specific cell types and increase MS 
susceptibility. 

MS is a human disease and the small effect sizes of the identified MS- 
associated genetic variants (Burrows et al., 2019) preclude the 

generation of strictly genetic models of MS. Models have been created 
however, that replicate distinct aspects of MS pathology and allow re-
searchers to interrogate specific disease processes in isolation. The pri-
mary rodent models used are the experimental autoimmune 
encephalomyelitis (EAE) model, which has been used to gain knowledge 
about leukocyte infiltration of the CNS and inflammatory demyelination 
(Constantinescu et al., 2011), and the toxin-induced models of demye-
lination, particularly cuprizone-feeding and lysolecithin injection, 
which induce oligodendrocyte death and allow the study of oligoden-
drogenesis and remyelination (Hall, 1972; Torkildsen et al., 2008). In 
vitro systems have historically involved the culture of primary cells 
derived from the rodent CNS (Sanabria-Castro et al., 2020), due to the 
difficulties associated with obtaining human CNS tissue. iPSC technol-
ogy has enabled the generation of large numbers of human cells for 
research purposes (Takahashi et al., 2007). Protocols have been devel-
oped and refined to differentiate iPSCs into neural progenitor cells 
(NPCs) (Chambers et al., 2009), oligodendrocytes (Garcia-Leon et al., 
2020), neurons (Gunhanlar et al., 2018), microglia (Abud et al., 2017), 
astrocytes (Tcw et al., 2017) and vascular cell types (Faal et al., 2019). If 
appropriately utilised, iPSCs could be used to facilitate research into MS 
pathophysiology and fast-track the identification of novel therapeutics. 

Patient-derived iPSCs were first used to model an inherited disease, 
spinal muscular atrophy, in 2009 (Ebert et al., 2009), but have since 
been used to interrogate the cellular and molecular mechanisms of 
complex neurological diseases, including amyotrophic lateral sclerosis 
(Livesey et al., 2016) and schizophrenia (Brennand et al., 2011). In 
2012, the first iPSC line from an individual with MS (MS iPSC line), was 
generated from a woman with relapsing-remitting MS (RRMS) (Song 
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et al., 2012). Over the past decade, 52 MS iPSC lines have been gener-
ated and reported in the literature (Table 1 and Fig. 1A) and 23 studies 
have been published that report the generation or use of MS iPSCs 
(Fig. 1B). MS iPSCs have been generated from peripheral blood mono-
nuclear cells, fibroblasts, mesenchymal cells, and renal proximal tubule 
epithelial cells (Fig. 2A), using a variety of reprogramming techniques, 
most commonly the episomal vector transduction and Sendai virus 
reprogramming methods (Fig. 2B). In line with MS prevalence and age of 
onset, the MS iPSC lines have been predominantly generated from 
women (Fig. 2C), individuals with RRMS (Fig. 2D) and individuals aged 
30-50 years (Fig. 2E). As more MS iPSC lines are generated, it becomes 
increasingly important that we consider how this resource can be used to 
better understand MS pathophysiology. 

2. Material and methods 

2.1. Study design 

Papers were accessed through Pubmed, Biorxiv and Google Scholar. 
The search terms used were "Multiple Sclerosis AND iPSCs OR Neurons 
OR Astrocytes OR Oligodendrocytes OR Microglia OR Endothelial Cells 
OR Pericytes OR Blood brain barrier". The reference lists of identified MS 
iPSC papers were also examined for additional MS iPSC papers. 23 MS 
iPSC papers were identified in total. 

2.2. Inclusion criteria 

The inclusion criterion was that each paper must have generated or 
used at least one iPSC line from an individual diagnosed with MS. All 
papers that met the criterion are listed in Supplementary Table 1. 

2.3. Data acquisition 

Following identification of MS iPSC papers, details of the MS iPSC 
lines were extracted from the methods and supplementary information. 
The following information was recorded: the number of MS iPSC lines 
generated/used, the starting cell type, type of iPSC reprogramming, sex 
and age of the individual(s) and the type of MS. If information was 

unavailable, the term "unspecified" was used. 

3. Are brain cells intrinsically different between people with 
and without MS? 

The roles of MS susceptibility genes identified through GWAS have 
largely implicated cells of the immune system in disease development 
(International Multiple Sclerosis Genetics Consortium, 2019). However 
recent mapping of established MS susceptibility genes onto multiple 
single cell RNA sequencing datasets from MS brain tissue, has revealed 
enrichment of MS-susceptibility genes in astrocytes, vascular cells and 
excitatory neurons (Absinta et al., 2021). Additionally, family-based 
studies and a novel machine learning approach implicate variants in 
CNS related genes in affecting MS susceptibility and progression, 
respectively (Fazia et al., 2021; Jokubaitis et al., 2022; Mascia et al., 
2022). This supports the idea that cells of the CNS, not only immune 
cells, are involved in MS development. To date, MS iPSCs have been used 
to generate neural stem / progenitor cells (NPCs) (Nicaise et al., 2017), 
neurons (Song et al., 2012), oligodendrocytes (Douvaras et al., 2014), 
astrocytes (Perriot et al., 2018; Ponath et al., 2018) microglia (Douvaras 
et al., 2017) and brain microvascular endothelial cells (BMECs) (Sup-
plementary Table 1). These early studies indiate that MS iPSCs have the 
capacity to differentiate into each CNS cell type, that MS iPSC-derived 
cells differ from those generated from healthy control iPSCs, and high-
light the potential use of MS iPSCs for identifying cell types and mo-
lecular pathways integral to MS initiation. 

3.1. MS iPSC-derived NPCs show signs of cellular senescence 

NPCs are multipotent cells capable of producing neurons and glia in 
the developing and adult CNS (Martinez-Cerdeno and Noctor, 2018). In 
MS, cells expressing NPC markers, Nestin and Musashi-1, have been 
identified within lesions (Snethen et al., 2008). In animal models of 
demyelination NPCs can perform both cell replacement and neuro-
protective functions (Einstein et al., 2006; Xing et al., 2014). Following 
cuprizone-induced demyelination, NPCs in the adult mouse sub-
ventricular zone generate new oligodendrocyte progenitor cells (OPCs) 
for the corpus callosum (Xing et al., 2014). Furthermore, these 

Table 1 
Papers that report the generation of new MS iPSC lines.  

Type of MS # of Lines 
Generated 

Sex Age Starting Cell Type Method of Reprogramming Reference 

PPMS(4)/ 
RRMS(4) 

8 - - PBMCs Episomal vectors Mutukula et al. (2021) 

PPMS(2)/ 
RRMS(4) 

6 F 26, 42, 45, 47, 54, 56 Fibroblasts Tempo Bioscience proprietary 
reprogramming protocol 

Ponath et al. (2018) 

PPMS 4 F/ 
M 

50F, 56M, 61M, 62F Fibroblasts StemGent mRNA/miRNA kit Douvaras et al. (2014) 

PPMS 3 F/ 
M 

45F, 61M, 62F PBMCs Sendai virus Nicaise et al. (2017) 

PPMS 1 M 65 PBMCs Sendai virus Mehta et al. (2021) 
RRMS 4 F/ 

M 
15M, 17F, 21F, 31F PBMCs Episomal vectors Perriot et al. (2018) 

RRMS 3 F/ 
M 

35F, 56F, 61M PBMCs Episomal vectors Ghirotto et al. (2022) 

RRMS 3 F/ 
M 

32F, 34F, 71M Fibroblasts Sendai virus Starost et al. (2020) 

RRMS 1 M 25 PBMCs Sendai virus Begentas et al. (2021) 
RRMS 1 M 32 Renal proximal tubule 

epithelial cells 
Episomal vectors Massa et al. (2016) 

RRMS 1 F 35 Fibroblasts Supernatant from transfected HEK293 cells Song et al. (2012) 
SPMS 4 F 37, 39, 42, 43 Menstrual blood stromal 

cells 
Supernatant from transfected HEK293 cells Lopez-Caraballo et al. 

(2020) 
- 6 F/ 

M 
33F, 41M, 42F, 44M, 
49F, 49M 

Fibroblasts Retrovirus Miquel-Serra et al. 
(2017) 

- 6 - - PBMCs Episomal vectors Morales Pantoja et al. 
(2020) 

- 1 M 73 - - Linville et al. (2019)  
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NPC-derived OPCs differentiate and make a significant contribution to 
callosal remyelination following cuprizone withdrawal. When primary 
mouse or iPSC-derived NPCs are injected into the lateral ventricles or 
cisterna magna of EAE mice, the NPCs are recruited to lesions where 

they reduce the pathological and clinical signs of disease (Einstein et al., 
2006; Laterza et al., 2013). The NPCs attenuate immune cell infiltration 
to the CNS rather than contributing to cell replacement (Laterza et al., 
2013). While these studies do not point to NPCs playing a role in MS 

Fig. 1. Summary statistics of MS iPSC usage. A. The number of MS iPSCs lines generated overtime. B. The number of papers published that make use of MS iPSC lines 
overtime. A, B. Studies were found using PubMed between 3/5/21 – 22/3/22 with the key search terms “multiple sclerosis” and “iPSCs”. 

Fig. 2. Details about MS iPSC lines and their generation. A. The proportion of MS iPSCs that were reprogrammed from fibroblasts, menstrual blood mesenchymal 
cells, peripheral mononuclear blood cells (PBMCs) and renal proximal tubule epithelial cells B. The proportion of MS iPSCs that underwent different reprogramming 
protocols. C. The proportion of MS iPSC lines that have been generated from women and men. D. The proportion of MS iPSC lines that have been generated from 
people with relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS) and primary-progressive MS (PPMS). E. The distribution of the age at which cells 
were collected from the donors. A-E. Studies were found using PubMed between 3/5/21 – 22/3/22 with the key search terms “multiple sclerosis” and “iPSCs”. 
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initiation, they suggest that NPCs could influence the MS disease course 
by influencing neural repair and neuroinflammation. iPSC-derived NPCs 
are transcriptionally and functionally similar to primary foetal and adult 
human NPCs (Hofrichter et al., 2017; Lorenz et al., 2017). MS 
iPSC-derived NPCs have been generated and studied to determine 
whether there are intrinsic differences in NPCs from people with MS that 
could contribute to MS pathology (Mutukula et al., 2021; Nicaise et al., 
2017; Nicaise et al., 2019). iPSCs can be differentiated into NPCs by 
adding SMAD (suppressor of mothers against decapentaplegic) in-
hibitors to the culture medium to mimic developmental signalling and 
specify cells towards the neuroectoderm lineage. This takes approxi-
mately 14 days (Chambers et al., 2009), is the first step in many neuron, 
oligodendrocyte and astrocyte differentiation protocols, and results in a 
population of self-renewing NPCs that can be cryopreserved, thawed, 
and readily expanded for experimental and differentiation protocols 
(Cheng et al., 2017). 

Early studies of MS iPSC-derived NPCs suggest that they undergo 
premature cellular senescence and are less capable of providing neuro-
protection than NPCs derived from control iPSCs (people without MS). 
Primary progressive MS (PPMS) or control iPSC-derived NPCs were 
injected into the tail vein of mice after two weeks of cuprizone feeding. 
These mice underwent a further two weeks of cuprizone feeding before 
tissue collection, at which point the corpus callosum of MS-NPC injected 
mice had less myelination and a larger number of apoptotic cells than 
control-NPC injected mice (Nicaise et al., 2017). Interestingly, 
PPMS-iPSC-derived NPCs were also more likely to differentiate into 
astrocytes and not oligodendrocytes. This suggests there is an intrinsic 
deficiency in the capacity for PPMS iPSC-derived NPCs to differentiate 
into cells of the oligodendrocyte lineage to directly promote myelin 
repair, and that they fail to support myelin repair from other sources. 
PPMS iPSC-derived NPC paracrine signalling is also dysregulated, as 
culturing primary rat OPCs with conditioned medium harvested from 
PPMS iPSC-derived NPCs, increases their susceptibility to 
glutamate-induced cell death and impairs their differentiation into oli-
godendrocytes (Nicaise et al., 2017). In MS lesions and normal 
appearing white matter, approximately half of all SOX2+ NPCs express 
p16Ink4a (Nicaise et al., 2019), a marker of cellular senescence, and 
PPMS iPSC-derived NPCs also express genes associated with cellular 
senescence at a higher level than control iPSC-derived NPCs (Mutukula 
et al., 2021; Nicaise et al., 2019). This appears to be the result of aber-
rant mTOR signalling, as the gene expression profile of PPMS 
iPSC-derived NPCs, and their capacity to secrete factors that promote 
OPC differentiation in vitro is restored to that of control iPSC-derived 
NPCs when they are treated with the mTOR inhibitor, rapamycin 
(Nicaise et al., 2019). Together these studies examined NPCs from 7 
different MS iPSC lines and provide the first evidence that NPCs may 
undergo accelerated cellular senescence in people with MS, a phenotype 
that could feasibly contribute to MS development and progression. 

3.2. Properties of MS iPSC-derived cells of the oligodendrocyte lineage 

Oligodendrocyte death, demyelination, and a failure of remyelina-
tion are key features of MS pathology. Oligodendrocytes are the cell type 
most often produced from iPSCs for MS research (Lopez-Caraballo et al., 
2020; Morales Pantoja et al., 2020; Mozafari et al., 2020; Starost et al., 
2020). The earliest protocol to successfully differentiate human iPSCs 
into cells of the oligodendrocyte lineage took 6 months and produced 
cells that successfully myelinated CNS axons when transplanted into 
shiverer mice (Wang et al., 2013). Alternative protocols for oligoden-
drocyte differentiation have since been published that are faster, 
simpler, have an improved differentiation efficiency (Douvaras et al., 
2014; Ehrlich et al., 2017; Garcia-Leon et al., 2020; Gorris et al., 2015), 
and result in iPSC-derived oligodendrocytes with a gene expression 
profile comparable to that of adult human primary oligodendrocytes 
(Ehrlich et al., 2017). 

Initial investigations sought to determine whether the impaired 

oligodendrocyte differentiation experienced by people with MS, resulted 
from an intrinsic deficiency in cells of the oligodendrocyte lineage or 
was due to the inflammatory lesion environment. The proliferation rate 
of OPCs, capacity for oligodendrocyte differentiation, and myelination 
was found to be equivalent for control- and MS iPSC-derived oligoden-
drocytes in vitro (Starost et al., 2020). Furthermore, control- and MS 
iPSC-derived O4+ OPCs / immature oligodendrocytes were able to 
proliferate, differentiate and remyelinate when injected into the fore-
brain of shiverer mice (Mozafari et al., 2020). To determine whether the 
inflammatory environment was responsible for poor oligodendrocyte 
differentiation in people with MS, the cytokines IFNγ and TNFα were 
added to control iPSC-derived oligodendrocyte cultures and were found 
to impair oligodendrocyte differentiation (Starost et al., 2020). A sepa-
rate study compared the effect of a chronic, low-dose of IFNγ on control 
and MS iPSC-derived OPC differentiation and found that oligodendro-
cyte differentiation was equally inhibited in both groups. These exper-
iments indicate that MS iPSC-derived OPCs show a normal susceptibility 
to inflammatory differentiation block (Morales Pantoja et al., 2020). 
While these studies strongly argue against MS-relevant intrinsic differ-
ences in OPC and oligodendrocyte behavior, a proteome comparison 
revealed that MS iPSC-derived OPCs, from people with secondary pro-
gressive MS (SPMS), expressed proteins associated with cellular move-
ment and cell-to-cell signalling at a lower level than control 
iPSC-derived OPCs. Furthermore, SPMS iPSC-derived OPC migration 
was impaired, and conditioned media from these cells was sufficient to 
slow control iPSC-derived OPC migration by ~ 50% (Lopez-Caraballo 
et al., 2020), suggesting that the absence of a normally secreted factor 
could reduce OPC migration in people with MS. Further work will be 
required to determine whether intrinsic differences exist in cells of the 
oligodendrocyte lineage in people with MS and their contribution to the 
disease pathology. 

3.3. Is neuron function inherently impaired in people with MS? 

Neuron loss underpins lasting cognitive and motor impairment in 
people with MS (Dutta and Trapp, 2011) and can be extensive, with 
some lesions exceeding 60% neuron loss (Mews et al., 1998). Particular 
neuronal subtypes, such as parvalbumin interneurons, are more 
vulnerable to MS-induced degeneration (Zoupi et al., 2021). This may 
result from the loss of oligodendrocyte-derived metabolic support (Lee, 
Y. et al., 2012; Philips et al., 2021) or the release of pro-inflammatory 
proteins, such as TNFα, from infiltrating peripheral immune cells or 
activated glia (Kuhlmann, 2002). iPSCs can be differentiated to produce 
functional neuronal subtypes (Mertens et al., 2016), making it possible 
to characterise the intrinsic membrane properties and response of neu-
rons to inflammatory mediators. While each differentiation protocol and 
neuron subtype will be different, foetal and adult primary cortical 
neurons display significant overlap with iPSC-derived neurons when 
examined by single cell RNA sequencing (Handel et al., 2016). 

Despite the significant role that neurons play in MS pathology, only 
two studies have investigated the properties of MS iPSC-derived neurons 
(Massa et al., 2016; Song et al., 2012). The first study found that MS 
iPSC-derived neurons had a hyperpolarised resting membrane potential 
relative to control iPSC-derived neurons and failed to generate sponta-
neous action potentials (Song et al., 2012), while the later study found 
that MS iPSC-derived neurons had a typical morphology and normal 
electrophysiological properties (Massa et al., 2016). It is important to 
note however, that these studies examined one MS iPSC line each and 
used differentiation protocols that did not specify a neuronal subtype. To 
truly determine whether MS iPSC derived neurons possess intrinsic de-
ficiencies that contribute to MS pathology, more cell lines need to be 
subjected to differentiation methods that produce specific neuronal 
subtypes. Intrinsic changes in neuron function have been identified 
using iPSCs generated from people with other neurological conditions, 
such as Parkinson’s disease (Carola et al., 2021), autism spectrum dis-
order (Lim et al., 2021) and tuberous sclerosis complex (Catlett et al., 
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2021). Characterising the earliest drivers of neuron pathology will be 
critical for developing neuroprotective therapies for MS and this could 
be achieved by studying MS iPSC-derived neurons. 

3.4. MS iPSC-derived astrocytes are functional but have an altered 
metabolic profile 

In the healthy CNS, astrocytes perform a diverse range of functions 
including the regulation of blood flow, facilitation of synaptic commu-
nication, and formation of the glia limitans (Sofroniew and Vinters, 
2010). In response to inflammatory demyelination, astrocytes become 
reactive (Escartin et al., 2021) and while reactive astrocytes can perform 
pro- and anti-inflammatory functions, the MS lesion environment typi-
cally promotes a pro-inflammatory phenotype (Liddelow et al., 2017). 
Reactive astrocytes engulf myelin debris (Ponath et al., 2017) and 
contribute to glial scaring, but it is unclear whether these processes are 
beneficial or detrimental (Anderson et al., 2016; Ponath et al., 2017; 
Silver and Miller, 2004). Experimental evidence from the EAE mouse 
model of inflammatory demyelination support reactive astrocytes 
contributing to CNS damage as they release an array of chemokines and 
upregulate adhesion molecules (Yi et al., 2019). Complete astrocyte 
ablation however, results in more severe EAE (Toft-Hansen et al., 2011), 
suggesting that astrocytes are also capable of reducing the extent of 
immune infiltration into the CNS. While astrocytes can modulate EAE, 
this does not shed light on the importance of astrocytes in MS initiation 
or susceptibility. iPSCs generated from people with vanishing white 
matter and Alexander disease have been differentiated to generate as-
trocytes, which were found to have abnormal gene expression profiles 
and cellular phenotypes including increased astrocytic proliferation and 
a reduced ability to promote OPC differentiation (Leferink et al., 2019; 
Zhou et al., 2019). 

Three studies have characterised MS iPSC-derived astrocytes (Ghir-
otto et al., 2022; Perriot et al., 2018; Ponath et al., 2018). The generation 
of mature astrocytes from iPSCs is a lengthy process and requires at least 
60 days. As this is an active area of research and protocol optimisation is 
ongoing, no single method has been broadly adopted. However, there is 
evidence for overlap in the gene expression profiles of foetal primary 
astrocytes and iPSC-derived astrocytes (Perriot et al., 2018). Current 
protocols typically generate NPCs and expose them to growth factors, 
such as epidermal growth factor and ciliary neurotrophic factors, to 
specify an astrocytic fate (Perriot et al., 2018). Control and MS iPSCs 
show similar astrocytic differentiation efficiencies, assessed by quanti-
fying expression of the astrocytic markers S100B and GFAP (Ghirotto 
et al., 2022; Perriot et al., 2018). However, qPCR array data suggest that 
control and MS iPSC-derived astrocytes are intrinsically different 
(Ghirotto et al., 2022), and the majority of the differentially expressed 
genes were associated with signalling pathways that regulate cell death, 
mitochondrial dysfunction, and neurodegeneration. The frequency of 
mitochondrial fission is also elevated in MS iPSC-derived astrocytes; 
they produce elevated levels of superoxide and proinflammatory che-
mokines following TNF-α exposure, and a metabolomic analysis in-
dicates that amino acid synthesis and sphingolipid metabolism is 
perturbed (Ghirotto et al., 2022). The cellular changes are consistent 
with those that occur during MS pathogenesis (Hassanpour et al., 2020 
(Negrotto and Correale, 2017)(Patergnani et al., 2018), and suggest 
that, in people with MS, astrocytes may be predisposed to react to in-
flammatory stimuli, perhaps contributing to CNS damage and prevent-
ing repair. 

MS iPSC-derived astrocytes have also been used to investigate the 
biological effect of a known MS risk variant, rs7665090G (International 
Multiple Sclerosis Genetics Consortium, 2013). rs7665090G is located 
within an intergenic region between NFKB1 and MANBA and increases 
NFκB signalling in PBMCs (Housley et al., 2015). When MS iPSC-derived 
astrocytes carrying the risk variant were exposed to TNFα, IFNγ and 
IL-1β, they showed a more dramatic induction of NFκB expression and 
activation of the NFκB target genes, IL-15, ICAM1, CXCL10, C3 and 

CCL5, than MS and control iPSC-derived astrocytes with the protective 
allele (Ponath et al., 2018). Elevated NFκB expression was not a general 
feature of MS iPSC-derived astrocytes, but a functional consequence of 
the MS-associated risk variant, demonstrating that MS iPSCs can be used 
in a targeted way to understand how genetic variants contribute to MS 
risk. 

3.5. The generation MS iPSC-derived microglia 

Microglia are the resident macrophages of the CNS and exhibit dy-
namic phenotypic plasticity in response to the local environment 
(Dubbelaar et al., 2018). Importantly, microglia adopt unique 
disease-associated transcriptional states in MS (Masuda et al., 2019) and 
a recent large-scale MS GWAS, reported that the expression of MS risk 
genes was enriched in microglia (International Multiple Sclerosis Ge-
netics Consortium, 2019). Microglia can be generated from iPSCs 
(Muffat et al., 2016), however, unlike other CNS cells types, microglia 
are mesoderm-derived and so iPSCs are first differentiated into he-
matopoietic progenitor cells. This is followed by microglial specification 
by exposure to TGFβ and interleukin-34 (Abud et al., 2017). 
iPSC-derived microglia recapitulate the key transcriptomic states char-
acteristic of microglia purified from human brains (Popova et al., 2021), 
making them valuable for research purposes, as microglial tran-
scriptomes vary significantly across species (Geirsdottir et al., 2019). 
Patient-specific iPSC-derived microglia have been studied in the context 
of other neurodegenerative diseases, with Huntington’s disease 
iPSC-derived microglia being hyper-reactive to proinflammatory cyto-
kines (O’Regan et al., 2021). MS iPSC-derived microglia have been 
generated (Douvaras et al., 2017), however, they have not yet been 
functionally characterised with respect to their role in MS 
pathophysiology. 

3.6. Does vascular dysfunction contribute to MS initiation or 
susceptibility? 

The blood brain barrier (BBB) is a specialised structure that is 
composed of endothelial cells, pericytes and astrocytes, which act 
together to restrict immune cell or serum protein entry and transport 
nutrients into the CNS (Daneman and Prat, 2015). In MS, the BBB is 
compromised, allowing peripheral immune cells and damaging serum 
proteins, such as fibrinogen, into the CNS (Frischer et al., 2009; Marik 
et al., 2007; Vos et al., 2005). The mechanism of BBB compromise is not 
understood, however studies using magnetic resonance imaging indicate 
that BBB dysfunction is an early event that precedes lesion formation 
(Tortorella et al., 1999; Vos et al., 2005). As differentiation protocols 
exist that allow iPSCs to be used to generate each of the key 
BBB-associated cell types (Faal et al., 2019; Lu, T. M. et al., 2021; 
Stebbins et al., 2019) it may be possible to model this early pathology 
using MS iPSC-derived neurovascular cell types. 

BMECs express highly specialised tight junction proteins that regu-
late the transport of molecules and cells across the BBB (Mittapalli et al., 
2010). Recent studies of MS iPSC-derived BMECs (Linville et al., 2019; 
Nishihara et al., 2022) indicate that the function of these cells is 
impaired. A monolayer of BMECs, derived from a single MS-iPSC line, 
was shown to have reduced trans-endothelial electrical resistance 
(TEER) compared to BMECs derived from a non-MS iPSC line (Linville 
et al., 2019). This phenotype has since been confirmed in BMECs derived 
from 4 MS iPSC lines, and is associated with a larger cell size, increased 
Intercellular Adhesion Molecule 1 expression, a greater permeability to 
sodium fluorescein and impaired P-glycoprotein efflux pump activity 
(Nishihara et al., 2022). Adhesion assays using allogenic T helper 1 cells 
and autologous PBMCs revealed that these cells exhibited stronger in-
teractions with MS iPSC-derived BMECs, indicating a greater capacity 
for peripheral immune cell invasion into the CNS. Activation of 
Wnt/β-catenin signalling during endothelial cell differentiation restored 
the impaired barrier properties of MS iPSC-derived BMECs (Nishihara 
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et al., 2022). These studies suggest that that MS development could be 
associated with early and intrinsic changes to vascular cell types and 
that increased Wnt/β-catenin signalling may be able to reverse the 
intrinsic deficits. Investigations into other vascular cells types such as 
pericytes, and their interactions with endothelial cells will be crucial to 
gain a better understanding of potential vascular deficits in people with 
MS. Pericytes wrap around endothelial cells and regulate blood flow and 
BBB permeability (Daneman et al., 2010; Heymans et al., 2020). 
Numerous differentiation protocols have been developed to produce 
iPSC-derived neural pericytes, however, these protocols have not yet to 
be used to investigate MS iPSC-derived pericytes (Faal et al., 2019; 
Stebbins et al., 2019). 

4. Benefits and limitations of utilising iPSCs for MS research 

The genetic component of MS risk is incredibly complex and signif-
icant efforts to understand the polygenic nature of MS have been con-
ducted through large consortium based case-control GWAS 
(International Multiple Sclerosis Genetics Consortium, 2019). This 
approach has successfully identified hundreds of common genetic vari-
ants that associate with MS development, each individually of small 
effect size, but has led to few confirmed MS risk genes. Other study 
designs, including the employment of exome or genome sequencing 
strategies to identify rare genetic variation in families with multiple 
related people with MS, have yielded individual candidate genes and 
variants, but there has been little functional follow-up to explain and 
validate their role in MS development (Gharagozloo et al., 2019; Salehi 
et al., 2021; Wang et al., 2016). The lack of confirmed MS risk genes has 
prohibited the creation of faithful preclinical genetic models of MS, 
similar to those developed for other diseases, such as amyotrophic 
lateral sclerosis, where the development of the SOD1G93A mouse, based 
on familial genetic discoveries, has significantly contributed to the field 
(Gurney et al., 1994). Indeed, it is not possible to model a polygenic 
disease like MS in the same way that we model a monogenic disease, for 
which the introduction of a single mutation or the deletion of a gene can 
recapitulate the disease phenotype in vitro and in vivo (Rosen et al., 
2018). The complex and largely unknown polygenic nature of MS means 
that artificial replication of the genetic underpinnings, through tools 
such as CRISPR, is challenging (Jinek et al., 2012; Mackay-Sim, 2012). 
The study of primary samples from individuals with MS has been the 
only way for researchers to truly study MS and access to primary CNS 
tissue samples is limited to post-mortem and biopsied tissue. The static 
nature of brain tissue samples and the disease stage at which they are 
typically acquired, limits the ability of researchers to establish a clear 
sequence of pathological events, particularly those relevant to early 
disease stages. MS iPSCs may be an alternative source of disease relevant 
cell types that possess the full genetic component of MS risk from an 
individual with MS. iPSCs are ideally suited to studying the genetics of 
MS, however, the imprint of lifestyle and environmental factors, in the 
form of epigenetic modifications are lost during reprogramming (Kim 
et al., 2010). Epigenetic changes likely contribute to MS development 
and progression (Küçükali et al., 2015), but only direct reprogramming, 
which converts a mature cell type directly into another mature cell type, 
can preserve epigenetic signatures, and offer an alternative in vitro 
approach for studying the epigenetics of MS (Chanoumidou et al., 2021; 
Yun et al., 2022). 

Combined advances in iPSC and CRISPR technologies provide a 
powerful platform on which the genetics of complex diseases can be 
unravelled (Jinek et al., 2012; Pintacuda et al., 2021). Following genetic 
analyses, disease associated variants can be investigated in depth using 
disease relevant iPSC lines carrying candidate risk variants. iPSCs can be 
differentiated into disease relevant cell types to determine the effect of 
the variant. However, it is important to acknowledge that there can be 
significant variability in the behavior of different iPSC lines, and addi-
tional variability can be introduced by the differentiation protocols. For 
this reason, rigorous quality control standards must be maintained, high 

sample numbers are needed, and each experiment must be carefully 
designed to support the identification of disease-relevant phenotypes 
(Volpato and Webber, 2020). If a phenotype is detected, isogenic lines 
can be generated by removing the candidate variant from the MS iPCSc 
or introducing the variant into healthy iPSCs. As MS is a polygenic 
disease, the biological effect of any individual MS-associated variant is 
likely to be small and result in a subtle phenotype, however, the modi-
fication of a single variant on the disease-relevant genomic background, 
has the potential to disrupt a phenotype reliant on multiple variants 
working in concert (Coccia and Ahfeldt, 2021). This approach would 
provide robust validation of the biological effects of candidate variants 
on specific cell types. 

Conducting a well-designed iPSC study is expensive, largely due to 
the cost of culture medium components, culture plasticware and staff 
costs associated with iPSC maintenance and differentiation. Despite this, 
they provide a scalable pipeline in which genetic findings can be directly 
linked to cell specific phenotypes. An example of this is the recent iPSC 
Neurodegeneration Disease Initiative which is currently working to 
model over 100 variants associated with Alzheimer’s and related dis-
eases, using CRISPR to create highly characterised isogenic cell lines 
containing or lacking each variant (Ramos et al., 2021). The use of iPSCs 
for MS genetic studies will require monitoring of the DNA sequence of 
each iPSC line, as they are prone to accumulate genetic abnormalities 
over time when undergoing routine culture (Rebuzzini et al., 2015). 
Genetic aberrations take the form of chromosomal abnormalities, such 
as a trisomy or loss of a chromosome, and sub-chromosomal abnor-
malities, such as translocations or regional deletions (Rebuzzini et al., 
2015). Steps can be taken to limit the likelihood of accumulated genetic 
abnormalities, including the adoption of gentle passaging techniques 
and expanding and cryopreserving low passage cells for later use (Gar-
itaonandia et al., 2015). 

iPSCs can be used to investigate biological processes by differentia-
tion into simple monoculture or more complex 3D environments, such as 
organoids (Wray, 2021), to investigate disease phenotype development 
and its progression over time. Monocultures provide a unique oppor-
tunity to investigate specific cell types in the absence of influencing 
factors, and co-culture systems, which involve the culture of 2 or more 
cell types together, facilitate the examination of basic cell-cell in-
teractions or, in some cases, the function of rudimentary structures that 
resemble those formed in vivo, such as the BBB (Lippmann et al., 2020). 
Organoids are being used to model more complex cellular interactions 
(Wray, 2021). These self-organising in vitro tissue models are made up of 
multiple cell types, with myelinoids,comprising multiple neuron sub-
types, OPCs, oligodendrocytes and astrocytes. Myeloids have been used 
to recapitulate some disease-relevant phenotypes, with iPSCs derived 
from a person with Nfasc155 deficiency generating myeloids with 
impaired paranode localisation (James et al., 2021). Cerebral organoids 
generated from MS iPSCs are being developed, as evidenced by a con-
ference abstract at the 2021 American Academy of Neurology Annual 
Meeting, reporting that MS cerebral organoids grow at an accelerated 
rate and appear to have thicker cortical structures (Chen et al., 2021). 
The use of organoids is relatively unrefined, due to the infancy of this 
technology, and have limitations including the lack of vasculature, 
blood flow and nutrient penetration, and heterogeneity (Wray, 2021). 
Despite this, they are an attractive tool for MS research, and are likely to 
be used increasingly in the coming years. 

As iPSC technology improves and bona fide MS phenotypes are 
discovered, we anticipate that MS iPSC-derived neural cells will reduce 
our dependency on in vivo animal models for basic research and thera-
peutic screening. iPSC-derived human in vitro models of MS can be used 
to increase our knowledge of MS disease mechanisms and identify cell 
types and molecular pathways that can be targeted to prevent disease 
progression or perhaps even disease initiation (Coccia and Ahfeldt, 
2021). This could also allow MS researchers to take advantage of the 
recent shift in drug discovery away from target-based screening towards 
phenotypic screening (Lee et al., 2012; Moffat et al., 2017; Shi et al., 
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2017). This is partly due to patient iPSC-derived cells being able to 
recapitulate disease phenotypes, being highly scalable, and avoiding 
interspecies differences (Mestas and Hughes, 2004). Basic cellular 
models or more complex organoids have been generated to test drug 
panels. If an MS relevant phenotype is identified in iPSC-derived cells, 
this could expedite MS drug development. iPSC- or MS iPSC-derived 
OPCs may also be an effective method of screening for remyelinating 
drugs. Silicon micropillars, which are freestanding nanofibers, have 
been developed that can be used to test the myelinating capacity of 
cultured oligodendrocytes and enables the testing of compounds that 
promote remyelination (Mei et al., 2014). 

5. Conclusions 

Despite the generation of a considerable number of MS iPSC lines 
(Table 1), the resource remains significantly underutilised by the MS 
research community. Patient-derived iPSCs are widely used in the study 
of other neurodegenerative disorders and have been instrumental in the 
biological characterisation of disease associated variants (Carola et al., 
2021; Ortiz-Virumbrales et al., 2017). Studies using MS iPSCs have 
predominantly examined their differentiation capacity and briefly 
validated the functional properties of the resulting cell type. Few studies 
have investigated the effect of MS associated genetic variants on cell 
biology (Ponath et al., 2018) and none have made use of isogenic con-
trols. Given the recent advances in differentiation protocols that allow 
the generation of cell types relevant to MS and the feasibility of genetic 
editing, MS iPSCs present an exciting opportunity to biologically vali-
date MS-associated variants found in silico and characterise their cell 
specific phenotypes. 
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2020. iPS-derived early oligodendrocyte progenitor cells from SPMS patients reveal 
deficient in vitro cell migration stimulation. Cells 9 (8), 1803. https://doi.org/ 
10.3390/cells9081803. 

Lorenz, C., Lesimple, P., Bukowiecki, R., Zink, A., Inak, G., Mlody, B., Singh, M., 
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